II B.Tech - I Semester - Regular / Supplementary Examinations DECEMBER 2023

SIGNALS AND SYSTEMS

(Common for ECE, EEE)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Define and sketch the following signals i) Signum Function ii) Impulse function iii) Unit step function.	L2	CO1	7 M
	b)	Determine whether the following signals are energy or power signals i) $\mathrm{x}(\mathrm{t})=\mathrm{tu}(\mathrm{t})$ ii) $x(t)=e^{-a t} u(t)$	L2	CO1	7 M
OR					
2	a)	Find the even and odd components of the following signal $x(t)=\cos t+\sin t+2 \sin t+4 \cos t$	L2	CO1	7 M
	b)	Check whether the following systems are time invariant or not i) $y(t)=t^{2} x(t)$ ii) $y(t)=x(-2 t)$ iii) $y(n)=x(n)$	L2	CO1	7 M

UNIT-II

| 3 | a) | Explain the difference between the
 following systems.
 i) Linear and non-linear systems.
 ii) Time variant and time invariant
 systems. | CO1
 CO 2 | 7 M |
| :--- | :--- | :--- | :--- | :--- | :--- |
| b) | The output response of a continuous time
 LTI system is y(t)=2e-3tu(t) when the input
 $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})$. Find the Transfer function of
 the system. | L 3 | CO 1 | 7 M |
| CO 2 | | | | |

OR					
4	a)	Define LTI system and briefly explain about properties of a LTI system.	L2	CO1	7 M
ab2					

UNIT-III

5	a)	Find the exponential Fourier series for the full-wave rectified sine wave $\mathrm{x}(\mathrm{t})=\mathrm{ASin} \pi \mathrm{t}$, over the interval $(0,1)$.	L3	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 3 \end{aligned}$	7 M
	b)	Explain in detail about complex Fourier spectrum?	L2	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 3 \end{aligned}$	7 M

OR

$\left.\begin{array}{l|l|ll}6 & \text { a) } & \begin{array}{l}\text { State and prove Differentiation and } \\ \text { integration } \\ \text { Transform. }\end{array} & \text { L3 } \\ \text { properties of Fourier }\end{array}\right)$

	b)	Find the Fourier Transform of following signals i) $e^{-3 t} u(t)$ (ii) $\cos \omega_{0} t u(t)$	L3	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 3 \end{aligned}$	7 M
UNIT-IV					
7	a)	Determine the DTFT of a signal $x(n)=n(1 / 2)^{n} u(n)$.	L3	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 4 \end{aligned}$	7 M
	b)	State and prove Parseval's relation in DTFT.	L3	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 4 \end{aligned}$	7 M
OR					
8	a)	Determine the impulse response $h(n)$ for the system described by the second order difference equation $y(n)-2 y(n-1)=x(n)$ $+x(n-1)$.	L3	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 4 \end{aligned}$	7 M
	b)	Consider a discrete-time LTI System with impulse response $h(n)=(1 / 3)^{n} u(n)$. Determine the response of the system to the input $\mathrm{x}(\mathrm{n})=(1 / 4)^{\mathrm{n}} \mathrm{u}(\mathrm{n})$.	L3	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 4 \end{aligned}$	7 M
UNIT-V					
9	a)	Discuss any 3 properties of Laplace transform	L2	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 5 \end{aligned}$	7 M
	b)	Find the inverse Laplace transform of $\mathrm{X}(\mathrm{S})=5(\mathrm{~s}+5) / \mathrm{s}(\mathrm{s}+3)(\mathrm{s}+7) ; \operatorname{Re}(\mathrm{s})>-3$	L3	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 5 \end{aligned}$	7 M
OR					
10	a)	State and prove the final-value theorem of z-transform.	L3	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 5 \end{aligned}$	7 M
	b)	Find the inverse z - transform of $X(Z)=\frac{1+3 Z^{-1}}{1+3 Z^{-1}+2 Z^{-2},} ;\|Z\|>2$	L3	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 5 \end{aligned}$	7 M

